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ABSTRACT

Nucleic acid-based biochemical assays are crucial
to modern biology. Key applications, such as detec-
tion of bacterial, viral and fungal pathogens, require
detailed knowledge of assay sensitivity and specifi-
city to obtain reliable results. Improved methods to
predict assay performance are needed for exploiting
the exponentially growing amount of DNA sequence
data and for reducing the experimental effort
required to develop robust detection assays.
Toward this goal, we present an algorithm for the
calculation of sequence similarity based on DNA
thermodynamics. In our approach, search queries
consist of one to three oligonucleotide sequences
representing either a hybridization probe, a pair of
Padlock probes or a pair of PCR primers with an
optional TaqManTM probe (i.e. in silico or ‘virtual’
PCR). Matches are reported if the query and target
satisfy both the thermodynamics of the assay
(binding at a specified hybridization temperature
and/or change in free energy) and the relevant
biological constraints (assay sequences binding to
the correct target duplex strands in the required
orientations). The sensitivity and specificity of our
method is evaluated by comparing predicted to
known sequence tagged sites in the human
genome. Free energy is shown to be amore sensitive
and specific match criterion than hybridization
temperature.

INTRODUCTION

Successful nucleic acid-based detection assays must be
able to uniquely identify small amounts of potentially
diverse pathogen DNA or RNA in samples that contain
large amounts of nucleic acid sequence from background
species. For example, PCR assays to detect the presence of
HIV in human blood samples must be able to amplify

imperfectly conserved regions of the HIV genome without
amplifying any part of the human genome.
In silico assay screening can identify unreliable detection

assays and reduce assay development costs by querying
sequence databases with assay oligonucleotides (oligos) to
predict both potential false positive matches and the
absence of expected matches (i.e. false negatives). While
there are a number of existing software programs for
assay-dependent database searching, they are limited in
the choice of biochemical assay format, target database
size (a critical consideration for sampling in the presence
of a complex background) and sensitivity of the search
algorithm. Many existing tools can search a database with
a pair of PCR primers, including e-PCR (1), me-PCR (2),
PRIMEX (3), simPCR (4), BiSearch (5), SPCR (6) and
iPCRess (7). However, none of these programs support
additional assay formats (e.g. TaqManTM PCR, an assay
commonly used for pathogen detection). Additionally,
web-based and interactive tools, including PUNS (8), the
website insilico.ehu.es (9) and Amplify (10), are typically
restricted to searching a single genome. While searching a
single genome is useful for validating or annotating
expected true positive matches, generation of robust
detection assays requires testing a target database that
includes all available near neighbor and background
sequences. Given the ability to screen a large number of
targets, tools must also be able to accurately predict
possible assay matches in the target database. To identify
matches, most of the existing tools for in silico PCR rely
on a heuristic definition of sequence similarity based on
the number of mismatches (non-Watson and Crick base
pairs) and the number of gaps (insertions and deletions in
the primer-template duplexes). As we will demonstrate
subsequently, using a thermodynamic similarity measure
yields improved sensitivity and specificity. Finally, many
programs fail to consider all possible configurations of
assay oligos that can result in a positive detection. For
example, in addition to the PCR amplicon produced by
the forward and reverse primers, palindromic template
sequences can generate unintended amplicons when a
single oligo serves as both forward and reverse primer.
Our approach tests for these unintended matches.
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MATERIALS AND METHODS

A common feature of many nucleic acid-based biochem-
ical assays is that detection requires an initial temperature-
dependent hybridization of assay oligos to complementary
target sequences (which may then be followed by
enzymatic base extension or ligation reactions). The first
step in predicting potential matches between assay oligos
and target sequences is to identify all potential binding
sites in the target sequences that are consistent with user-
defined thresholds in hybridization melting temperature
(TM) and/or free energy change (�G=�H�T�S). The
melting temperature is calculated using

TM ¼
�H

�Sþ R ln CT=4ð Þ
, 1

where �H and �S are computed using the nearest
neighbor free energy parameters of SantaLucia (11), R is
the universal gas constant and CT is the total molar
concentration of strands.
Binding site locations are identified in two steps. First,

initial match candidates are identified by an exhaustive
enumeration of exact short word matches between query
and target sequences (3–8 bases, as specified by the user).
Queries that contain degenerate bases (e.g. R=A or G)
are expanded into multiple queries containing only real
bases (i.e. A, T, G and C). Second, a thermodynamic
alignment that minimizes the computed free energy
change (�G=�H�T�S) between the unbound and
bound states is used to predict the binding of the assay
oligo to the target DNA. The free-energy change is a
function of a pair-wise sequence alignment and is
parameterized in terms of the stacking contributions of
pairs of nearest neighbor bases (12): each term represents
the free-energy contribution of four bases, two pairs of
adjacent bases facing each other on the opposite strands of
a DNA duplex. Due to this nearest neighbor dependence,
the exact dynamic programming calculation of the
thermodynamically most probable alignment (that mini-
mizes �G) for a sequence of length N requires O(N3)
operations (13). While O(N3) thermodynamic alignment
algorithms have been implemented for DNA (14,15), the
need to screen large numbers of assay oligos against large
sequence databases makes the O(N3) cost very expensive,
even for short (20–25 base) sequences. A computationally
feasible O(N2) algorithm for computing the alignment that
minimizes the free energy at either a specified annealing
temperature or at the predicted TM has been proposed
(16,17). This approach uses an O(N2) dynamic program-
ming algorithm to align two sequences at a specified
alignment temperature. The calculation of the alignment
that minimizes the free energy at the predicted TM uses the
Dinkelbach algorithm to iteratively adjust the alignment
temperature until it equals the TM of the aligned duplex.
However, calculation of alignments using O(N2) dynamic
programming requires simplification of the duplex free-
energy function and the introduction of free-energy
parameters not specified in the formal duplex free-energy
function. In particular, the exact free-energy dependencies
on base-dependent duplex initiation terms, gaps and
consecutive mismatches are not included in the simplified

free-energy function. These omissions and modifications
decrease the accuracy of the computed duplex free energy.

To avoid both the high cost of the exact O(N3)
alignment and to reduce the approximation error due to
a simplified free-energy function, we developed a novel,
O(N2) thermodynamic alignment algorithm that incorpo-
rates and improves on the algorithm of Leber et al. (17).
Our approach treats the simplified free-energy function of
Leber et al. as a surrogate (18) free-energy function whose
only purpose is to generate an alignment that approxi-
mately minimizes the full duplex free-energy function. Our
algorithm divides the calculation of a thermodynamic
alignment into two stages. In the first stage, dynamic
programming is used to compute the duplex alignment
that minimizes a surrogate free-energy function at the
specified alignment temperature. In the second stage, the
alignment generated in the first stage is used to evaluate
the full duplex free energy function described in ref. (13).
The full duplex free energy function provides all ther-
modynamic parameters of interest: �H, �S and TM. Both
stage one and two can be incorporated into the
Dinkelbach algorithm (17) and iterated to produce align-
ments that approximately minimize the full free energy
of the duplex at its predicted melting temperature.

To insure that the surrogate free-energy function
produces alignments that approximately minimize the
full duplex free-energy function, we determined a new,
optimized set of dynamic programming parameters. The
parameters in the surrogate function that are not explicitly
specified by the full duplex free-energy function were
determined by simulated annealing-based minimizations
of the average full duplex free-energy function (evaluated
at the alignments that exactly optimize the surrogate
function) for a test set of 104 randomly generated
sequence pairs and a range of hybridization temperatures
(35–658C). The random sequence pairs were approxi-
mately 25 bases long, had 50% GþC composition and
contained insertions, deletions and mismatches. We
assumed that all parameters depend linearly on tempera-
ture and used linear regressions to compute the slope and
intercept for each surrogate parameter, as shown in
Table 1.

To assess the accuracy of our thermodynamic alignment
algorithm, alignments that minimized the surrogate free-
energy function were computed for randomly generated
test sets of 104 sequence pairs (containing insertions,
deletions and mutations) with 25%, 50% and 75% GþC
composition and compared to the exact O(N3) alignments
produced by the DINAmelt server (14). The temperature-
dependent error in �G is shown in Figure 1. Both the
single stage method (of Leber et al.) and the two stage
method systematically overestimate �G compared to the
values produced by the DINAmelt server. With the
exception of the region above 768C for the 75% GþC
test set, our two stage thermodynamic alignment algo-
rithm (i.e. the full duplex �G evaluated at the alignment
produced using optimized surrogate parameters) produces
more accurate estimates of duplex free energy than the
fixed temperature alignment, dynamic programming
algorithm of Leber et al. The observed improvement in
�G is significant, considering that the free-energy
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contribution of a A-T pair at 378C ranges from �0.58 to
�1.45 kcal/mol [depending on the identity of the neigh-
boring pair (13)]. The accuracy of our two stage �G
approximation improves as duplex GþC content
increases. However, this is most likely an artifact that

arises from whether A-T pairs at the ends of a duplex are
treated as Watson and Crick base pairs or dangling single-
stranded DNA. Our implementation considers them to be
Watson and Crick base pairs, but the DINAmelt server
treats them as dangling single stranded DNA [which is the
lower energy configuration (19)].
To measure the relative speedup of our O(N2) two-stage

thermodynamic algorithm compared to the exact O(N3)
alignments produced by the DINAmelt server, we
computed the average ratio of wall clock execution times
for both algorithms using randomly generated test sets
with a range of duplex sizes relevant for nucleic acid-based
assays. As shown in Figure 2, the size of the observed
speedup varies from a factor of 1 (no speedup) for a 15
base duplex (the size of a small PCR primer) to a factor of
8.5 for a 35 base duplex (the size of a TaqManTM probe).
As one might expect, the two-stage thermodynamic align-
ment algorithm has an increased computational cost
compared to the single stage (fixed temperature, dynamic
programming) algorithm of Leber et al. For all duplex
lengths shown, the increased computational cost of the
second stage (evaluating the full duplex free energy
function using the alignment produced by the first stage)
makes the two-stage algorithm about 20% slower than the
single-stage method. The average wall clock time required
to compute a single two-stage thermodynamic alignment
using a 2.4GHz Xeon CPU ranges from 1� 10�4 s to
1.8� 10�4 s for a 15 base and 35 base duplex, respectively.
As we will demonstrate subsequently, searches using our
O(N2) two-stage algorithm and thousands of PCR primers

Table 1. Optimized surrogate function parameters for computing

thermodynamic alignments

Parameter = ∆H−T∆S ∆H
(kcal/mol)

∆S
(eu)

5′ XW 3′
3′ YZ 5′ −5.779 −2.330×10−2

5′ XY 3′
3′ -- 5′ 5.247×10−1 3.318×10−4

5′ G- 3′
3′ CX 5′

5′ GX 3′ 
3′ C- 5′ 

5′ C- 3′
3′ GX 5′

5′ CX 3′ 
3′ G- 5′

−3.000 −1.318×10−2

5′ A- 3′
3′ TX 5′

5′ AX 3′
3′ T- 5′

5′ T- 3′
3′ AX 5′

5′ TX 3′
3′ A- 5′

−4.474 −2.091×10−2

5′ X- 3′
3′ YZ 5′

5′ XZ 3′
3′ Y- 5′ −2.421 −1.180×10−2

The bases W, X, Y and Z represent any of the four bases (A, T, G or
C), with the constraint that neither X and Y nor W and Z form a
Watson and Crick base pair. The ‘–’ symbol represents a gap. Each
parameter is a linear function of temperature: �H�T�S. While the
�S and �H values have units of entropy and enthalpy, they are for
alignment purposes only.
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Figure 1. The temperature-dependent thermodynamic alignment
approximation error evaluated using randomly generated test sets
with (A) 25% GþC content, (B) 50% GþC content and (C) 75%
GþC content. The solid black lines show the average error in the free
energy computed using only the non-optimized dynamic programming
parameters of Leber et al. The dotted red lines show the average error
in the two-stage free energy computed by first producing an alignment
using the dynamic programming parameters of Leber et al. and then
evaluating the free energy using the full duplex free-energy function of
SantaLucia. Finally, the solid red lines show the average error in the
two-stage free energy computed by first producing an alignment using
optimized dynamic programming parameters and then evaluating the
free energy using the full duplex free-energy function of SantaLucia.
For all curves, the approximation error, ��G, is defined as the
approximate �G minus the exact �G computed by the DINAmelt
server (14). The standard deviations about each point in all graphs are
less than or equal to 1.5� 10�2 kcal/mol. Each randomly generated test
set of 104, 25-base sequence pairs (containing insertions, deletions and
mutations) was pre-screened to insure that no sequence pairs in the test
set were also in the training set used to optimize the dynamic
programming parameters.
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Figure 2. Comparing the time to compute single stage (fixed temperature,
dynamic programming only) and two-stage thermodynamic alignments to
the time to compute O(N3) exact alignments. Speedup is computed as the
average of the wall clock time required to compute an exact O(N3)
alignment divided by the wall clock time required to compute either a one
or two-stage thermodynamic alignment. Wall clock time was computed
using the Unix time command to measure the run time required to align
105 random duplexes (containing insertions, deletions and mutations) of
the specified approximate length (insertions and deletions can change
the duplex length). The exact alignments were performed using the hybrid-
min program that is included with the DINAMelt server (UNAfold)
package (14). Error bars were computed by averaging the evaluation
times of 10 different randomly generated sets of duplexes for each duplex
length.
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against the human genome are feasible on small to mid-
sized computer clusters.
The algorithms presented in this article have been

implemented in ‘ThermonucleotideBLAST’, a cross-
platform command line tool written in Cþþ and freely
distributed under the BSD open source license from http://
public.lanl.gov/jgans/tntblast. The code has been tested on
Linux, Windows and OS X, and has been parallelized
using the MPI API for distributed memory machines and
the OpenMP API for shared memory machines.
Additional documentation for building and running the
program is provided at the website listed above.

RESULTS AND DISCUSSION

In silico PCR is a common example of assay-specific
searching for which a number of tools already exist. We
compared the specificity and sensitivity of the e-PCR
program and our approach (implemented in the Thermo-
nucleotideBLAST program) for the task of identifying
sequence-tagged sites (STSs), which are unique sites in the
human genome defined by a pair of PCR primers and an
amplicon length. Using a methodology based on Rotmis-
trovsky et al. (1), we constructed an STS test set that
contained 2185 STS primer pairs. Primer pairs were

included in the test set if they occurred once and only once
in both the GeneBridge 4 (20) and Stanford G3 (21)
radiation hybrid panels, and were reported to match a
single unique site on a single human chromosome. When
evaluating specificity and sensitivity, the first predicted
match of an STS to the correct chromosome was counted
as a true positive, while any subsequent matches to the
correct chromosome were counted as false positives (1).
Each match of an STS to an incorrect chromosome was
counted as a false positive. An STS that was not correctly
assigned to the proper chromosome was counted as a false
negative.

While significantly slower than e-PCR, Thermonuc-
leotideBLAST can search thousands of PCR primers
against the human genome. Using a 200 node cluster of
1.2GHz Pentium III Mobile CPUs and reading the
sequence data from an NFS file server, Thermonucleo-
tideBLAST required 2 h to search the human genome
using the 2185 STS primer pairs. Over 99% of this search
time was spent computing two-stage thermodynamic
alignments. The e-PCR performed the same search in a
significantly shorter time: 25min when run on a single
1.2GHz cluster node with 2 GB of RAM (with two gaps
and two mismatches allowed and a word size of 12 bases).

Figure 3 has five panels that show the same receiver
operator curve for e-PCR plotted with the different
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Figure 3. Comparing e-PCR and ThermonucleotideBLAST in STS search specificity and sensitivity. Comparisons were made by searching a set of 2185
STS primer pairs against the complete human genome (build 35, version 1). Specificity is defined as TP/(TPþFP) and sensitivity is defined as
TP/(TPþFN), where TP is the number of true positives, FP is the number of false positives and FN is the number of false negatives. The e-PCR was run
using W=12 (word size) and M=200 (allowed deviation from the expected amplicon size) and discontiguous words (DW), as opposed to contiguous
words (CW), were activated with F=3, as described in ref. (1). In order of increasing sensitivity, the plotted e-PCR points were computed using the
following parameters: (CW, g=0, n=0), (CW, g=0, n=1), (CW, g=1, n=1), (DW, g=0, n=1), (DW, g=1, n=1), (DW, g=2, n=1), (DW,
g=1, n=2) and (DW, g=2, n=2), where g is the number of allowed gaps and n is the number of allowed mismatches within the 12 base word.
ThermonucleotideBLAST was run using single-primer-PCR=False (to disable searching for PCR amplicons produced by a single amplicon), W=7
(requiring an exact match of seven bases to initiate a thermodynamic alignment), s=0.05 (salt concentration in M), t=9� 10�7 (strand concentration in
M), l=1000 (maximum allowed amplicon size) and dangle5=False and dangle3=False (to disable the use of dangling end bases at both ends of a
thermodynamic alignment). Each of the five graphs shows the effects of requiring an increasing the number of exact matches at the 30 end of each PCR
primer—however, the same e-PCR curve is reproduced in each graph. To compare the specificity and sensitivity of different match criteria,
ThermonucleotideBLAST searches were performed using �G (solid black curve), TM at 378C (solid red curve) and TM computed using the Dinkelbach
algorithm (solid blue curve).
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receiver operator curves for ThermonucleotideBLAST
that were supplemented with an additional match criterion
of 0–4 bases of exact match between the 30 end of the PCR
primer and the target sequence. The additional use of an
exact match criterion (i.e. at the 30 end of the PCR primer)
is a heuristic rule to account for the DNA polymerase’s
reduced efficiency extending primers that contain 30

terminal mismatches. A similar strategy is employed by
e-PCR, which searches for primer-target matches using
a hash table-based search of the last W bases at the 30 end
of the primer (1). The primary match criteria used
by ThermonucleotideBLAST were (i) a �G match criteria
ranging from �20 to �9 kcal/mol (solid black line), (ii) a
TM (computed at 378C) match criteria ranging from 358C
to 608C and (iii) a TM (computed using the Dinkelbach
algorithm) match criteria ranging from 358C to 608C.

As shown in Figure 3, the �G match criterion con-
sistently outperforms e-PCR in search sensitivity. Further-
more, it matches e-PCR in specificity when supplemented
with the additional, PCR-specific heuristic requiring an
exact match of at least three bases at the 30 end of each
primer. Finally, the �G match criterion is both more sen-
sitive and specific than either of the melting temperature-
based criteria.
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